Skip to main content

The Realization of Star Trek Technologies - Mark Lasbury ***

When a popular science writer takes on the science of Star Trek, the result is inevitably going to be held up against Lawrence Krauss's The Physics of Star Trek - an early popular science book and one of the first I ever read. I'm glad to say that Mark Lasbury manages to avoid the danger of rehashing Krauss's book. Where the earlier title took key Star Trek technologies and explored whether they could be made possible with actual physics, Lasbury gives us the Star Trek explanations and some thoughts on their feasibility, but concentrates primarily on situations where real life technology can provide some of the features of the Star Trek equivalent. In doing this, unlike Krauss, he omits aspects such as the warp drive, instant communication and time travel where the technology doesn't have a real-world parallel.

It quickly becomes clear that Lasbury really knows his stuff on what happens in different Star Trek episodes and the assorted 'technical manuals' that have sprung up around the series. If anything this aspect is over-done. There doesn't seem too much point labouring over why a technology is explained differently in a later episode than an earlier one - in the end it's because they had different writers and the later one couldn't be bothered to check. There's an element of 'this is fiction, get over it,' about this kind of detail.

The level of detail on the real world technologies is impressive - I think this book will strongly appeal to an audience that loves this kind of working through possibilities systematically - for example, looking at all the different ways we can do something roughly similar to phasers. Some parts such as lasers are likely to be familiar, but others, for example the idea of using a laser to ionise a path through air, then sending an electric charge along the path - so-called directed lightning - is fascinating. All too often, though, the result deteriorates into a list approach that makes more for completeness than reading pleasure.

The sections which proved most interesting to me were mostly those where we were closest to the real thing - I found the universal translator section particularly enjoyable - though the tricorder section spent too long on assorted medical add-ons for smartphones. The transporter section (something that was also covered by Krauss) also had plenty of absorbing content, though it's a shame Lasbury doesn't mention the no cloning theorem - or more entertainingly, the objection to the Star Trek transporter raised in that brilliant film Galaxy Quest of why such an incredibly sophisticated piece of technology requires its operator to smoothly push a pair of sliders.

Pretty well all popular science books have a few errors or points where a rather odd comment is made, and there were a number here. When talking about cloaking devices, the author says 'interesting, in both [Harry Potter and The Lord of the Rings], the cloaking devices were actually cloaks; I wonder if this is the genesis of the term "cloaking device?"' The only problem is that Star Trek predates Harry Potter, and the main cloaking device in the Lord of the Rings is, erm, a ring. Not all the problems are about cultural context. We're told photon torpedoes involve matter/antimatter annihilation, so no light is involved. Remind me what is produced when, particles and antiparticles annihilate? Oh, yes - photons.  Strangest of all is the description of the orbit of comet 2015 TB145; Lasbury tells us its orbit is 'very oblong.' I've seen diagrams of its orbit and - not surprisingly - it isn't at all rectangular.

If you really like getting into the detail of this kind of tech, this is going to be an excellent read for you. I can't give it more than three stars for the general reader, because it is too much of a 'listing every possible technology and how it works' book, but there's no doubt there will be an enthusiastic audience for this material.


Paperback:  

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re